Hybrid energy storage systems (HESSs) are essential for adopting sustainable energy sources. HESSs combine complementary storage technologies, such as batteries and supercapacitors, to optimize efficiency, grid stability, and demand management. This work proposes a semi-active HESS formed by a battery connected to the DC bus and a supercapacitor managed by a Sepic/Zeta converter, which has the aim of avoiding high-frequency variations in the battery current on any operation condition. The converter control structure is formed by an LQG controller, an optimal state observer, and an adaptive strategy to ensure the correct controller operation in any condition: step-up, step-down, and unitary gain. This adaptive LQG controller consists of two control loops, an internal current loop and an external voltage loop, which use only two sensors. Compared with classical PI and LQG controllers, the adaptive LQG solution exhibits a better performance in all operation modes, up to 68% better than the LQG controller and up to 84% better than the PI controller. Therefore, the control strategy proposed for this HESS provides a fast-tracking of DC-bus current, driving the high-frequency component to the supercapacitor and the low-frequency component to the battery. Thus, fast changes in the battery power are avoided, reducing the degradation. Finally, the system adaptability to changes up to 67% in the operation range are experimentally tested, and the implementation of the control system using commercial hardware is verified.
Read full abstract