Abstract

This paper introduces a nonlinear PI controller for improved speed regulation in permanent magnet direct current (PMDC) motor drive systems. The nonlinearity comes from the exponential (Exp) block placed in front of the classical PI controller, which uses a tunable exponential function to map the speed error nonlinearly. Such a configuration has not been studied till now, thus meriting further investigation. We consider an exponential PI (EXP-PI) controller and to attain the best performance from this controller, its parameters are optimized offline using salp swarm algorithm (SSA), which borrows its inspiration from the way of forage and navigation of salps living in deep oceans. To indicate the credibility of SSA tuned EXP-PI controller convincingly, numerous experiments on speed regulation in PMDC motor have been implemented using DSP of TMS320F28335. The results obtained are also compared to similar results in the literature. It is shown that the proposed approach performs well in practice by ensuring tight tracking of the speed reference and superb torque disturbance rejection for the closed loop control. Furthermore, superior performance is achieved by the proposed nonlinear PI controller with respect to a fixed-gain PI controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.