The paper focuses on the applications of neutrosophic set theory in the domain of classical algebraic structures, especially R-module. This study discusses some algebraic operations of neutrosophic sets of an R-moduleM, induced by the operations in M and demonstrates certain properties of the neutrosophic submodules of an R-module. The ideas of R module’s non-empty arbitrary family of neutrosophic submodules are characterized, and related outcomes are proved. The last section of this paper also derives a necessary and sufficient condition for a neutrosophic set of an R-module M.
Read full abstract