Researches on forging manipulator have enormous influence on the development of the forging industry and national economy. Clamp device and lifting mechanism are the core parts of forging manipulator, and have been studied for longer time. However, the optimization and mechanical accuracy reliability of them are less analyzed. Based on General Function(G F) set and parallel mechanism theory, proper configuration of 10t forging manipulator is selected firstly. A new type of forging manipulator driven by cylinders is proposed. After solved mechanical analysis of manipulator’s core mechanisms, expressions of force of cylinders are carried out. In order to achieve smaller force afforded by cylinders and better mechanical characteristics, some particular sizes of core mechanisms are optimized intuitively through the combined use of the genetic algorithms(GA) and GUI interface in MATLAB. Comparing with the original mechanisms, optimized clamp saves at least 8 percent efforts and optimized lifting mechanism 20 percent under maximum working condition. Finally, considering the existed manufacture error of components, mechanical accuracy reliability of optimized clamp, lifting mechanism and whole manipulator are demonstrated respectively based on fuzzy reliability theory. Obtained results show that the accuracy reliability of optimized clamp is bigger than 0.991 and that of optimized lifting mechanism is 0.995. To the whole manipulator under maximum working condition, that value exceeds 0.986 4, which means that optimized manipulator has high motion accuracy and is reliable. A new intuitive method is created to optimize forging manipulator sizes efficiently and more practical theory is utilized to analyze mechanical accuracy reliability of forging manipulator precisely.