The fruit of Morinda citrifolia, also known as the noni tree, has been extensively used in Polynesian culture as an alternative medicine to various diseases. Recent studies have pointed out its anxiolytic activity in vitro and in mouse models. Despite the effectiveness of developed anxiolytic drugs in the market, the potential side effects of these medications have led people to resort to traditional medicine such as M. citrifolia. However, evidence regarding its anti-anxiety characteristics is still lacking to this day. Hence, this preliminary study implemented combined network pharmacology and molecular docking to validate its anti-anxiety claims. This study highlighted the bioactive compounds of the M. citrifolia fruit part to have excellent absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, particularly their outstanding oral bioavailability and blood-brain barrier penetration, both of which are essential considerations to ensure the effectiveness of anxiolytic drugs to arrive at the site of action. Moreover, noni fruit metabolites target genes involved in glutamatergic synapse pathways, which have been significantly associated with anxiety. Through molecular docking, selected compounds exhibited a strong binding affinity towards GRIA2 and PRKCA, both of which have connections with glutamatergic pathways. With all things considered, the results established that the noni fruit potentially contains therapeutic agents that elicit anti-anxiety potential. Through this, the promotion of a more sustainable, accessible, and affordable treatment of anxiety could be developed.