Antidepressants are one of the main pharmaceutical classes detected in the aquatic environment. Nevertheless, there is a dearth of information regarding their potential adverse effects on non-target organisms. Thus, the aim of this study was the evaluation of sub-lethal effects on the freshwater mussel Dreissena polymorpha of two antidepressants commonly found in the aquatic environment, namely Fluoxetine (FLX) and Citalopram (CT). D. polymorpha specimens were exposed to FLX and CT alone and to their mixture (MIX) at the environmental concentration of 500ng/L for 14days. We evaluated the sub-lethal effects in the mussel soft tissues by means of a biomarker suite: the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the activity of the phase II detoxifying enzyme glutathione-S-transferase (GST). The oxidative damage was evaluated by lipid peroxidation (LPO) and protein carbonylation (PCC), while genetic damage was tested on D. polymorpha hemocytes by Single Cell Gel Electrophoresis (SCGE) assay, DNA diffusion assay and micronucleus test (MN test). Finally, the functionality of the ABC transporter P-glycoprotein (P-gp) was measured in D. polymorpha gills. Our results highlight that CT, MIX and to a lesser extent FLX, caused a significant alteration of the oxidative status of bivalves, accompanied by a significant reduction of P-gp efflux activity. However, only FLX induced a slight, but significant, increase in apoptotic and necrotic cell frequencies. Considering the variability in biomarker response and to perform a toxicity comparison of tested molecules, we integrated each endpoint into the Biomarker Response Index (BRI). The data integration showed that 500ng/L of FLX, CT and their MIX have the same toxicity on bivalves.
Read full abstract