Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.