Abstract

Circularly polarized luminescence (CPL) is a preferential emission from chiral systems. Introducing CPL to traditional small fluorescence probes will greatly enhance selectivity and sensitivity due to avoiding the background fluorescence. Small-molecule probes are practically useful for bioimaging and sensing but always suffer from weak CPL properties. To optimize chiral perturbation, the study of structure-CPL correlation is an urgent necessity. Here, we investigated the influence of 3, 3′-substituent of BINOL on optical properties and found that iodization could significantly enhance the fluorescence quantum yield (ΦF) and dissymmetry factor (|glum|). Based on this finding, we presented a strategy to design dual-readout probes emiting both robust total fluorescence and CPL upon activation. As an application example, we first designed a pair of thiols probes, R/S-P1, with the fluorescence readout showing good linear response to cysteine, and CPL signal displaying significant enhancement with |glum| from undetectable value to 0.7 × 10−3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.