The study presents a breakthrough of a balanced charge separation for heterojunction CuWO4-TiO2 cocatalyst to efficiently enhance visible light photocatalytic degradation of ciprofloxacin (CIP). A solvothermal-synthesized nanopyramid-like CuWO4 semiconductor was assembled before sol–gel treatment with TiO2 precursors to generate CuWO4-TiO2 nanocomposites. The optical, structural, and morphological properties of CuWO4-TiO2 were elucidated using UV–Vis DRS, XRD, FTIR, Raman spectroscopy, and TEM/SEM techniques. The UV–Vis DRS spectroscopy of as-synthesized CuWO4-TiO2 cocatalyst demonstrated enhanced visible light absorbance. The XRD patterns of CuWO4-TiO2 revealed a triclinic phase nanocrystal. The O-Ti–O functionality was confirmed by FTIR spectroscopy. The photoactive bands corresponding to anatase redshift were observed from Raman spectroscopy of CuWO4-TiO2 nanocomposite. The PL studies attributed this redshift to the elevated extra energy bands that aid electron/hole pair charge separation in a co-catalyst heterojunction CuWO4-TiO2 nanocomposite afforded by embedding CuWO4-MOF within TiO2 crystalline. The TEM showed that un-sintered CuWO4.MOF mimicked a pyramidal shape and converted to nanoflakes upon sintering, while TiO2 and CuWO4-TiO2 retained a tetragonal shape. The photocatalytic activity of CuWO4-TiO2 cocatalyst was studied using CIP, as a model pollutant. The innovative design of 5CuWO4-TiO2 charge separation nanocomposite completely degraded 10 mg L−1 CIP solution at pH = 6.31 (natural pH) and 9 under 120 min of sunlight irradiation.