Abstract

Metal–organic framework (MOF) and MOF-derived materials have attracted extensive research interest as environmental catalysts. In this study, a composite material (ZIF-67/CCot-8) was successfully prepared using cotton fiber as a substrate and growing ZIF-67 in situ. This material exhibited excellent catalytic performance and significantly improved the efficiency of antibiotics degradation. ZIF-67/CCot-8 at a concentration of 0.05 g/L, combined with 0.2 mM peroxymonosulfate (PMS), removed approximately 97% of ciprofloxacin (CIP) and 99% of tetracycline and sulfamethoxazole within 15 min. The high catalytic efficiency of this catalyst is mainly attributed to the uniform distribution of ZIF-67-derived nanoparticles on the surface of the cotton fibers, providing abundant active sites and thereby significantly enhancing the efficiency of antibiotics degradation. Radical quenching experiments and electron paramagnetic resonance (EPR) analyses revealed that sulfate radicals (SO4•-) and singlet oxygen (1O2) were the main active species. Mass spectrometry (MS) was used to elucidate the CIP degradation pathway. The growth of the roots and stems of soybean sprouts in different water environments (tap water, treated water, and untreated water) was also observed. The results demonstrated a significant improvement in the inhibition of plant growth in the post-degradation CIP solution, indicating a substantial reduction in the toxicity of the degraded aqueous solution. To validate the practicality of the ZIF-67/CCot-8/PMS system, a continuous-flow water-treatment device was designed. This system removed 98% of the CIP solution within 180 min, demonstrating its excellent durability. This study presents a potential pathway for effective antibiotics removal using MOF-derived materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.