Abstract

The Z-scheme MIL-88B/BiOBr (referred to as MxBy, whereas x and y are the mass of MIL-88B(Fe) and BiOBr) heterojunction photocatalysts are successfully prepared by a facile ball milling method. By adding low concentration H2 O2 under visible light irradiation, the Z-scheme heterojunction and photocatalytic-Fenton-like reaction synergistically enhance the degradation and mineralization of ciprofloxacin (CIP). Among them, M50B150 showed efficient photodegradation efficiency and excellent cycling stability, with 94.6% removal of CIP (10mgL-1 ) by M50B150 (0.2gL-1 ) under 90min of visible light. In the MxBy heterojunctions, the rapid transfer of photo-generated electrons not only directly decomposed H2 O2 to generate ·OH, but also improved the cycle of Fe3+ /Fe2+ pairs, which facilitated the reaction with H2 O2 to generate ·OH and ·O2 - radicals. In addition, the effects of photocatalyst dosages, pH of CIP solution, and coexisting substances on CIP removal are systematically investigated. It is found that the photocatalytic- Fenton-like reaction can be carried out at a pH close to neutral conditions. Finally, the charge transfer mechanism of the Z-scheme is verified by electron spin resonance (ESR) signals. The ecotoxicity of CIP degradation products is estimated by the T.E.S.T tool, indicating that the constructed photocatalysis-Fenton-like system is a green wastewater treatment technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call