BackgroundCorrect prediction of treatment response is a central goal of precision psychiatry. Here, we tested the predictive accuracy of a variety of pre-treatment patient characteristics, including clinical, demographic, molecular genetic, and neuroimaging markers, for treatment response in patients with social anxiety disorder (SAD). MethodsForty-seven SAD patients (mean±SD age 33.9 ± 9.4 years, 24 women) were randomized and commenced 9 weeks’ Internet-delivered cognitive behavior therapy (CBT) combined either with the selective serotonin reuptake inhibitor (SSRI) escitalopram (20 mg daily [10 mg first week], SSRI+CBT, n = 24) or placebo (placebo+CBT, n = 23). Treatment responders were defined from the Clinical Global Impression-Improvement scale (CGI-I ≤ 2). Before treatment, patients underwent functional magnetic resonance imaging and the Multi-Source Interference Task taxing cognitive interference. Support vector machines (SVMs) were trained to separate responders from nonresponders based on pre-treatment neural reactivity in the dorsal anterior cingulate cortex (dACC), amygdala, and occipital cortex, as well as molecular genetic, demographic, and clinical data. SVM models were tested using leave-one-subject-out cross-validation. ResultsThe best model separated treatment responders (n = 24) from nonresponders based on pre-treatment dACC reactivity (83% accuracy, P = 0.001). Responders had greater pre-treatment dACC reactivity than nonresponders especially in the SSRI+CBT group. No other variable was associated with clinical response or added predictive accuracy to the dACC SVM model. LimitationsSmall sample size, especially for genetic analyses. No replication or validation samples were available. ConclusionsThe findings demonstrate that treatment outcome predictions based on neural cingulate activity, at the individual level, outperform genetic, demographic, and clinical variables for medication-assisted Internet-delivered CBT, supporting the use of neuroimaging in precision psychiatry.
Read full abstract