Chronic osteomyelitis is a chronic bone infection characterized by progressive osteonecrosis and dead bone formation, which is closely related to persistent infection and chronic inflammation. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC) play an important role in bone tissue regeneration and the modulation of inflammatory processes. However, their role and mechanism of action in osteomyelitis have not been reported so far. This paper explores the potential effect of BMSC-derived exosomes on osteomyelitis in vitro model with the aim of providing a theoretical basis for the treatment of osteomyelitis in the future. In this study, exosomes were isolated and extracted from BMSCs and identified. MC3T3-E1 cells were treated with Staphylococcal protein A (SPA) to establish an in vitro model of osteomyelitis. Next, the effects of BMSC-derived exosomes on cell proliferation, apoptosis, angiogenesis, and autophagy in MC3T3-E1 cells treated with SPA were evaluated. Results showed that the proliferation ability of MC3T3-E1 cells increased after co-culture with BMSC-derived exosomes. Moreover, exosomes induced autophagy and osteogenic differentiation in MC3T3-E1 cells. The mRNA and protein levels of factors related to proliferation, differentiation, apoptosis, autophagy, and angiogenesis including β-Catenin, Runx2, Bcl-2, VEGFA, and Beclin-1 upregulated in SPA-treated MC3T3-E1 cells, whereas the levels of inflammatory cytokines including TNF-α, IL-1β, and IL-6 decreased in the supernatant. The results showed that exosomes derived from BMSCs may participate in the attenuation of osteomyelitis by inducing proliferation and osteogenic differentiation and regulating the inflammatory state in bone cells.