Abstract

Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call