Three Hordeum spontaneum-derived resistances (referred to as 145L2, 41T1 and 40Y5) have demonstrated long-term effectiveness against barley scald, caused by Rhynchosporium commune, in western Canada. Genetic mapping of these resistances in three populations, and the use of five barley genome assemblies, revealed they co-located to a narrowly defined 0.58–1.2 Mbp region of chromosome 6HS containing the Rrs13 scald resistance gene. Differential disease reactions among the three resistances and a Rrs13 carrier (AB6) to a panel of 24 scald isolates indicated that the four resistances were unique from one another. A marker created to target the 6HS scald locus was screened across a panel of barley germplasm that included H. vulgare, H. spontaneum and H. bulbosum lines. The marker showed specificity to H. vulgare lines known to carry the 6HS scald resistances and to two H. spontaneum lines that trace their origins to Jordan. Within the 0.58–1.2 Mbp region were 2–7 tandemly repeated leucine-rich repeat receptor-like proteins (LRR-RLP) and one lectin receptor-like kinase (Lec-RLK) genes with abundant sequence variation between them. The well-defined role that RLP and RLK genes play in plant defense responses make them logical candidate resistance genes, with one possible hypothesis being that each unique scald resistance may be encoded by a different RLP that interacts with a common RLK. It is suggested the three scald resistances be temporarily named Rrs13145L2, Rrs1341T1 and Rrs1340Y5 to recognize their co-location to the Rrs13 locus until it is determined whether these resistances represent unique genes or alleles of the same gene.
Read full abstract