Electron beam induced deposition (EBID) and etching (EBIE) are promising methods for the fabrication of three-dimensional nanodevices, wiring of nanostructures, and repair of photolithographic masks. Here, we study simultaneous EBID and EBIE, and demonstrate an athermal electron flux controlled transition between material deposition and etching. The switching is observed when one of the processes has both a higher efficiency and a lower precursor partial pressure than the other. This is demonstrated in two technologically important systems: during XeF2-mediated etching of chrome on a photolithographic mask and during deposition and etching of carbonaceous films on a semiconductor surface. Simultaneous EBID and EBIE can be used to enhance the spatial localization of etch profiles. It plays a key role in reducing contamination buildup rates during low vacuum electron imaging and deposition of high purity nanostructures in the presence of oxygen-containing gases.
Read full abstract