The presence of kinetochore and DNA synthesis in micronuclei (MN) induced in Chinese hamster ovary (CHO) cells by clastogenic and aneuploidogenic substances such as mitomycin C (MMC) and colchicine was determined by immunofluorescence technique using CREST antikinetochore antibodies and anti-bromodeoxyuridine (BrdUrd) antibodies. A cytofluorimetric analysis was also performed. Colchicine significantly increased micronucleated cells at least up to 96 h from the end of treatment. As expected, among colchicine-induced micronucleated cells the majority contained at least one CREST + MN. MMC induced a significant increase in micronucleated cells up to 120 h from the end of treatment and the great majority of MN lacked kinetochore fluorescence, indicating that MMC-induced MN were derived from acentric fragments. However, colchicine and MMC at 48 and 72 h from the end of treatment, induced a significant increase of CREST- and CREST + MN, respectively, suggesting an induction of clastogenicity by colchicine and aneuploidy by MMC. The clastogenic effect of colchicine after 48 h was also confirmed by the presence of chromatid fragments in metaphase cells. A cytofluorimetric analysis indicated that, as expected, colchicine and MMC interfere with the G2/M and S phases, respectively; however, a slight interference of colchicine with the S phase was also observed. DNA synthesis was present in MN and it was in most cases synchronous with synthesis in the main nucleus. The frequency of cells with MN in S phase observed in untreated or MMC-treated cells is in agreement with the proportion of cells without MN showing DNA synthesis. On the contrary, the frequency of cells with MN in S phase observed in colchicine-treated cells was significantly lower than that observed in control and MMC-treated cells.
Read full abstract