Edwardsiellosis is a serious bacterial disease affecting Nile tilapia (Oreochromis niloticus), causing septicemia and mortalities. Edwardsiella tarda and Edwardsiella anguillarum were isolated from Nile tilapia summer mortality events in Egypt. Diseased fish showed hemorrhagic septicemia, skin erosions, and eye opacity. A total of 24 Edwardsiella spp. isolates were retrieved from the investigated fish specimens. Phenotypic and biochemical characteristics grouped isolates into typical Ed. tarda (n = 14 strains) and atypical Ed. tarda (n = 10 strains). The BLAST analysis of sodB gene sequencing confirmed the conventional identification of typical Ed. tarda strains (n = 14) and reidentified all the atypical strains (n = 10) as Ed. anguillarum. Isolates showed a combination of virulence factors, including biofilm formation (66.6%), hemolysis (100%), chondroitinase (50%), and proteolytic activity (20.8%). The major part of isolates showed high resistance to ampicillin, amoxicillin, gentamycin antibiotics and harbored tetA, blaCTX-M, and aadA1 resistance genes. Pathogenicity testing of isolates in O. niloticus confirmed their virulence. Challenged fish exhibited septicemic signs similar to naturally diseased fish. Infections in naturally infected tilapia triggered acute and chronic histopathological alterations. Degenerative and necrotic changes were noticed in hematopoietic organs. Granulomas were noticed in between the hepatic parenchyma. The data extracted from the study confirm that accurate identification of the causative agents of edwardsiellosis should be reliant on genetic-based approaches. Analysis of the bacterium virulence properties offers insights into establishing novel therapeutics for edwardsiellosis control. The findings refer to the need for antimicrobial sensitivity testing to minimize antimicrobial resistance and increase therapy efficacy.
Read full abstract