Abstract

The bacterial enzyme chondroitinase ABC (ChABC), which cleaves chondroitin sulfate glycosaminoglycan chains, can degrade inhibitory scar tissue formed following spinal cord injury, thereby promoting axonal growth and regeneration. However, delivering the active enzyme for prolonged periods presents practical limitations. To overcome these problems, we prepared a lentiviral vector (LV) encoding chondroitinase AC (Chase) together with the green fluorescent protein (GFP) reporter (Chase/LV) and demonstrated its expression and enzymatic activity in vitro and in vivo. Neural precursor cells infected with Chase/LV expressed the GFP reporter at levels that increased dramatically with time in culture. Enzymatic activity from the supernatant of the infected cells was demonstrated by dot blot assay using an antibody that recognizes the digested form of CSPG and was compared with the bacterial ChABC enzyme. Chick DRG cultures plated adjacent to the CSPG border and incubated with supernatant from Chase/LV-infected cells showed neurites growing into the CSPG area, a response similar to that after treatment with ChABC. In contrast, in control cultures, the neurites turned to avoid the inhibitory CSPG interface. Degradation of CSPG in these cultures was confirmed by specific CSPG antibodies. A single injection of Chase/LV into the spinal cord resulted in sustained secretion of the enzyme, whose activity was detected for 8 weeks by expression of GFP and evidence of the digested form of CSPG. This study demonstrates the efficacy of the Chase/LV vector and its potential as a therapeutic tool to reduce scar inhibition and promote axonal growth and repair following central nervous system injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.