Abstract
BackgroundTranscranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs. New methodWe sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs. ResultsWe obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs. ConclusionsAlthough within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.