Growth and energy transfer are critically dependent on effective transport of lipid molecules between tissues and cellular compartments. This process is specific in egg and eleutheroembryos, when energetic and structural lipids, located at the yolk sac, need to be mobilized in order to be incorporated in the new forming embryo, or to produce energy. Here, we describe the transcriptional profile of 11 genes that codify for proteins involved in intercellular lipid transport and cholesterol metabolism during the early development of a marine teleost fish (Scophthalmus maximus), from notochord formation to the period beyond mouth opening. The mRNA expression pattern of genes (apoA1, apoB100, apoE, cetp, mtp, pltp, lipC, lpl, hmgcr1, soat1, lcat) is described and related to previously published lipid levels in larvae and PPARs—peroxisome proliferator-activated receptors—mRNA levels from the same experiment (Cunha et al. in Mar Genomics 10:17–25, 2013). Our findings show that the transcription of genes responsible for apolipoproteins production starts soon before hatching and that activities decline along the development. In contrast, genes responsible for cholesterol synthesis have a low transcription level early in the development and their activity increases later. Apolipoproteins and other genes related to reverse cholesterol transport are possibly under the control of Pparα2, while the expression of extracellular lipid transfer proteins and enzymes involved in cholesterol synthesis is possibly under the simultaneous control of Pparα1 and Pparγ. Generally, the observed transcription of genes involved in lipid transport is in accordance with the lipid composition of the larvae and transcription of master regulators of lipid metabolism such as the nuclear receptors—PPARs.
Read full abstract