AbstractAtmospheric circulation is a key driver of climate variability, and the representation of atmospheric circulation modes in regional climate models (RCMs) can enhance the credibility of regional climate projections. This study examines the representation of large‐scale atmospheric circulation modes in Coupled Model Inter‐comparison Project phase 5 RCMs once driven by ERA‐Interim, and by two general circulation models (GCMs). The study region is Western Europe and the circulation modes are classified using the Promax rotated T‐mode principal component analysis. The results indicate that the RCMs can replicate the classified atmospheric modes as obtained from ERA5 reanalysis, though with biases dependent on the data providing the lateral boundary condition and the choice of RCM. When the boundary condition is provided by ERA‐Interim that is more consistent with observations, the simulated map types and the associating time series match well with their counterparts from ERA5. Further, on average, the multi‐model ensemble mean of the analysed RCMs, driven by ERA‐Interim, indicated a slight improvement in the representation of the modes obtained from ERA5. Conversely, when the RCMs are driven by the GCMs that are models without assimilation of observational data, the representation of the atmospheric modes, as obtained from ERA5, is relatively less accurate compared to when the RCMs are driven by ERA‐Interim. This suggests that the biases stem from the GCMs. On average, the representation of the modes was not improved in the multi‐model ensemble mean of the five analysed RCMs driven by either of the GCMs. However, when the best‐performed RCMs were selected on average the ensemble mean indicated a slight improvement. Moreover, the presence of the North Atlantic Oscillation (NAO) in the simulated modes depends also on the lateral boundary conditions. The relationship between the modes and the NAO was replicated only when the RCMs were driven by reanalysis. The results indicate that the forcing model is the main factor in reproducing the atmospheric circulation.
Read full abstract