Controlling the process of CHO cell fed-batch culture is critical for biologics quality control. However, the biological complexity of cells has hampered the reliable process understanding for industrial manufacturing. In this study, a workflow was developed for the consistency monitoring and biochemical marker identification of the commercial-scale CHO cell culture process through 1 H NMR assisted with multivariate data analysis (MVDA). Firstly, a total of 63 metabolites were identified in this study object in 1 H NMR spectra of the CHO cell-free supernatants. Secondly, multivariate statistical process control (MSPC) charts were used to evaluate process consistency. According to MSPC charts, the batch-to-batch quality consistency was high, indicating the CHO cell culture process at the commercial scale was well-controlled and stable. Then, the biochemical marker identification was provided through orthogonal partial least square discriminant analysis (OPLS-DA) based S-line plots during the cell logarithmic expansion, stable growth, and decline phases. Identified biochemical markers of the three cell growth phases were as follows: L-glutamine, pyroglutamic acid, 4-hydroxyproline, choline, glucose, lactate, alanine, and proline were of the logarithmic growth phase; isoleucine, leucine, valine, acetate, and alanine were of the stable growth phase; acetate, glycine, glycerin, and gluconic acid were of the cell decline phase. Additional potential metabolic pathways that might influence the cell culture phase transitions were demonstrated. The workflow proposed in this study demonstrates that the combination of MVDA tools and 1 H NMR technology is highly appealing to the research of the biomanufacturing process, and applies well to provide guidance in future work on consistency evaluation and biochemical marker monitoring of the production of other biologics.
Read full abstract