Abstract
The emergent realisation of Industry 4.0 principles across biomanufacturing, through recent endeavours, will markedly enhance the development and manufacture of modern therapeutics. Through implementation of digital process models, a greater understanding of the intricate relationship between product quality attributes and manufacturing process performance may be established. While contributing towards accelerated process development, representative process models enable advanced optimisation of process parameters, thus having a tangible impact on the assurance of product quality and manufacturing robustness. Hybrid approaches, which couple mechanistic interpretability with statistical data-fitting, are posed to broaden the value and utility of digital models. To augment the advancement in modelling techniques and high-throughput technology, there is a growing requirement for automated approaches towards data processing and model assembly. In this study, a novel strategy is proposed, which leverages saturation and sigmoidal relationships, along with an underlying material balance framework, for the automated assembly of hybrid dynamic models of cell growth. The proposed hybrid model is compared against an equivalent mechanistic model based on Monod expressions. While both models achieve a reasonable fit against experimental data, the hybrid model demonstrates superior predictive performance. Development of automated hybrid models, as demonstrated in this study, may greatly accelerate process digitalisation across biopharmaceutical manufacture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.