Trial-and-error chlorination as a conventional practice for swimming pool water disinfection may fail to consistently maintain the pool's residual chlorine within regulatory limits. This study explored the variability of residual chlorine and other common water quality parameters of two sample swimming pools and examined the potential of using a mass balance model for proactive determination of chlorine consumption to better secure the hygienic safety of bathers. A lightly loaded Pool 1 with a normalized bather load of 0.038 bather/m3/day and a heavily loaded Pool 2 with a normalized bather load of 0.36 bather/m3/day showed great variances in residual free and combined chlorine control by trial-and-error methods due to dynamic pool uses. A mass balance model based on chemical and physical chlorine consumption mechanisms was found to be statistically valid using field data obtained from Pool 1. The chlorine consumption per capita coefficient was determined to be 4120 mg/bather. The predictive method based on chlorine demand has a potential to be used as a complementary approach to the existing trial-and-error chlorination practices for swimming pool water disinfection. The research is useful for pool maintenance to proactively determine the required chlorine dosage for compliance of pool regulations.
Read full abstract