Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m−2 s− was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m−2 s−1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m−2 s−1, respectively. Convexity (Θ), a measure of the extent of co‐limitation between PS II turnover and whole‐chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m−2 s−1, whereas Pmax increased above the control. Treatment at 2200 μMmol m−2 s−1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m−2 s−1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB‐reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m−2 s−1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m−2 s−1.
Read full abstract