Abstract

We have used two monoclonal antibodies to demonstrate the presence and localization of actin in interphase and mitotic vegetative cells of the green alga Chlamydomonas reinhardtii. Commercially available monoclonal antibodies raised against smooth muscle actin (Lessard: Cell Motil. Cytoskeleton 10:349-362, 1988; Lin: Proc. Natl. Acad. Sci. USA 78:2335-2339, 1981) identify Chlamydomonas actin as a approximately 43,000-M(r) protein by Western immunoblot procedures. In an earlier study, Detmers and coworkers (Cell Motil. 5:415-430, 1985) first identified Chlamydomonas actin using NBD-phallacidin and an antibody raised against Dictyostelium actin; they demonstrated that F-actin is localized in the fertilization tubule of mating gametes. Here, we show by immunofluorescence that vegetative Chlamydomonas cells have an array of actin that surrounds the nucleus in interphase cells and undergoes dramatic reorganization during mitosis and cytokinesis. This includes the following: reorganization of actin to the anterior of the cell during preprophase; the formation of a cruciate actin band in prophase; reorganization to a single anterior actin band in metaphase; rearrangement forming a focus of actin anterior to the metaphase plate; reextension of the actin band in anaphase; presence of actin in the forming cleavage furrow during telophase and cytokinesis; and finally reestablishment of the interphase actin array. The studies presented here do not allow us to discriminate between G and F-actin. None the less, our observations, demonstrating dynamic reorganization of actin during the cell cycle, suggest a role for actin that may include the movement of basal bodies toward the spindle poles in mitosis and the formation of the cleavage furrow during cytokinesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call