In this paper, a novel amperometric immunosensor for the determination of carbofuran based on gold nanoparticles (GNPs), magnetic Fe3O4 nanoparticles-functionalized multiwalled carbon nanotubes-chitosan (Fe3O4-FCNTs-CS), and bovine serum albumin (BSA) composite film was proposed. First, GNPs were immobilized onto the glassy carbon electrode (GCE) surface, and then the magnetic Fe3O4 nanoparticles mixed with chitosan-functionalized multiwall carbon nanotubes (CS-FCNTs) homogeneous composite (CS-FCNTs-Fe3O4) was immobilized onto the GNPs layer by electrostatic interactions between amino groups of CS and GNPs. Because chitosan (CS) contains many amino groups, it can absorb more antibodies. FCNTs have high surface area, high electrical conductivity, and it can enhance the electron transfer rate; Magnetite (Fe3O4) nanoparticles can provide a favorable microenvironment for biomolecules immobilization due to their good biocompatibility, strong superparamagnetic property, and low toxicity; and GNPs possess high surface-to-volume reaction, stability, and high conductivity. Gold Nanoparticles/Fe3O4-FCNTs-CS composite film was constructed onto the GCE surface, which had significant synergistic effects toward immunoreaction signal amplification. The stepwise assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Under the optimal conditions, the current response was proportional to the concentration of carbofuran ranging from 1.0 ng/mL to 100.0 ng/mL and from 100.0 ng/mL to 200 µg/mL with the detection limit 0.032 ng/mL. The proposed immunosensor exhibited good accuracy, high sensitivity, and stability, and it can be used for detection of carbofuran pesticide.
Read full abstract