Objective: To summarize the genotype and clinical characteristics of chylomicron retention disease (CMRD) caused by secretion associated Ras related GTPase 1B (SAR1B) gene variations. Methods: Clinical data and genetic testing results of 2 children with CMRD treated at Children's Hospital of Fudan University and Jiangxi Provincial Children's Hospital from May 2022 to July 2023 were summarized. To provide an overview of the clinical and genetic characteristics of CMRD caused by SAR1B gene variations, all of the literature was searched and reviewed from China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, China VIP database, China Biology Medicine disc and PubMed database (up to January 2024) with "chylomicron retention disease" "Anderson disease" or "Anderson syndrome" as the search terms. All relevant literatures were reviewed to summarize the clinical and genetic features of CMRD caused by SAR1B gene variations. Results: One 11-year-old boy and one 4-month-old girl with CMRD. Both patients had lipid malabsorption, failure to thrive, decreased cholesterol, elevated transaminase and creatine kinase, and vitamin E deficiency, with homozygous variations (c.224A>G) and compound heterozygous variations (c.224A>G and c.554G>T) in SAR1B gene, respectively. Case 1 was followed up for over a month, and he still occasionally experienced lower limb muscle pain. Case 2 was followed up for more than a year, and her had caught up to normal levels. Both patients had no other significant discomfort. Literature search retrieved 0 Chinese literature and 22 English literatures. In addition to the 2 cases reported in this study, a total of 51 patients were identified as CMRD caused by SAR1B gene variations. Twenty-one types of SAR1B variants 10 missense, 4 nonsense, 3 frameshift, 1 in-frame deletion, 1 splice, 1 gross deletion, and 1 gross insertion-deletion were found among the 51 CMRD cases. Among all the patients, 49 cases had lipid malabsorption (43 cases had diarrhea or fatty diarrhea, 17 cases had vomiting, and 12 cases had abdominal distension), 45 cases had lipid soluble Vitamin deficiency (43 cases had Vitamin E deficiency, 10 cases had Vitamin A deficiency, 9 case had Vitamin D deficiency, and 5 cases had Vitamin K deficiency), 35 cases had failure to thrive, 32 cases had liver involvement (32 cases had elevated transaminases, 5 cases had fatty liver, and 3 cases had hepatomegaly), 29 cases had white small intestinal mucosa under endoscopy, and 17 cases had elevated creatine kinase, 14 cases had neuropathy, 5 cases had ocular lesions, 2 cases had acanthocytosis, 1 case had decreased cardiac ejection fraction, and 1 case was symptom-free. Conclusions: Early infancy failure to thrive and lipid malabsorption are common issues for CMRD patients. The Laboratory tests are characterized by hypocholesterolemia with or without fat-soluble vitamin deficiency, elevated liver enzymes and (or) creatine kinase. Currently, missense variations are frequent among the primarily homozygous SAR1B genotypes that have been described.