With the use of the whole cell arrangement of the patch-clamp technique, an outward-directed time-dependent potassium current was identified in cultured chicken growth plate chondrocytes. This delayed rectifier potassium current (IK) activated with a sigmoidal time course during voltage steps to potentials positive to -40 mV. The half-maximal voltage required for current activation was determined to be -8 mV. The reversal potential (Erev) for IK, measured using deactivating tail currents, was -72 mV in the presence of 140 mM internal and 5 mM external [K+] solutions. Changes in external [K+] caused Erev to shift in a manner expected for a potassium-selective channel. In addition, increasing external [K+] from 5 to 50 mM caused the slope conductance of the tail currents to increase twofold. The chondrocyte IK was inhibited by the potassium-channel blocker 4-aminopyridine (4-AP) at concentrations of 0.5-4 mM and by the scorpion venom toxin charybdotoxin (CTX; 10 nM) but was unaffected by 10 mM tetraethylammonium (TEA). Addition of 20 microM ZnCl2 reduced IK in a voltage-dependent manner with the greatest inhibition found to occur at potentials near the threshold for current activation. Reduction of IK by ZnCl2 was accompanied by a slowing in the kinetics of IK activation. On the basis of the gating and pharmacological properties of this current, it is suggested that the chondrocyte channel belongs to a superfamily of K+ channels found in bone and immune system cells. The chondrocyte K+ channel may contribute to the unusually high [K+] found in the extracellular fluid of growth plate cartilage.
Read full abstract