BackgroundA recent trial showed that postmenopausal women diagnosed with hormone receptor-positive, human epidermal growth factor receptor-2 (HER2)-negative, lymph node-positive (1–3 nodes) breast cancer with a 21-gene recurrence score of ≤ 25 could safely omit chemotherapy. However, there are limited data on population-level long-term outcomes associated with omitting chemotherapy among diverse women seen in real-world practice.MethodsWe adapted an established, validated simulation model to generate the joint distributions of population-level characteristics of women diagnosed with early-stage breast cancer in the U.S. Input parameters were derived from cancer registry, meta-analyses, and clinical trial data. The effects of omitting chemotherapy on 10-year distant recurrence-free survival, life-years, and quality adjusted life-years (QALYs) were modeled for premenopausal and postmenopausal women. QALYs were discounted at 3%. Results were evaluated for subgroups stratified by race and ethnicity. Sensitivity analyses included testing results across a range of inputs. The model was validated using the published RxPONDER trial data.ResultsIn premenopausal women, the 10-year distant recurrence-free survival rates were 85.3% with chemo-endocrine and 80.1% with endocrine therapy. The estimated life-years and QALYs gained with chemotherapy in premenopausal women were 2.1 and 0.6, respectively. There was no chemotherapy benefit in postmenopausal women. There was no variation in the absolute benefit of chemotherapy across racial or ethnic subgroups. However, there were differences in distant recurrence-free survival rates, life-years, and QALYs across groups. Sensitivity analysis showed similar results. The model closely replicated the RxPONDER trial.ConclusionsModeled population-level outcomes show a small chemotherapy benefit in premenopausal women, but no benefit among postmenopausal women. Simulation modeling provides a useful tool to extend trial data and evaluate population-level outcomes.