Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley. Seed germination plays a critical role in the establishment of seedlings and is significantly impacted by the presence of waterlogging stress. However, there is a limited understanding of the regulatory mechanisms of gene expression and metabolic processes in barley during the germination stage under waterlogging stress. This study aimed to investigate the metabolome and transcriptome responses in germinating barley seeds under waterlogging stress. The findings of the study revealed that waterlogging stress sharply decreased seed germination rate and seedling growth. The tolerant genotype (LLZDM) exhibited higher levels of antioxidase activities and lower malondialdehyde (MDA) content in comparison to the sensitive genotype (NN). In addition, waterlogging induced 86 and 85 differentially expressed metabolites (DEMs) in LLZDM and NN, respectively. Concurrently, transcriptome analysis identified 1776 and 839 differentially expressed genes (DEGs) in LLZDM and NN, respectively. Notably, the expression of genes associated with redox reactions, hormone regulation, and other biological processes were altered in response to waterlogging stress. Furthermore, the integrated transcriptomic and metabolomic analyses revealed that the DEGs and DEMsimplicated in mitigating waterlogging stress primarily pertained to the regulation of pyruvate metabolism and flavonoid biosynthesis. Moreover, waterlogging might promote flavonoid biosynthesis by regulating 15 flavonoid-related genes and 10 metabolites. The present research provides deeper insights into the overall understanding of waterlogging-tolerant mechanisms in barley during the germination process.
Read full abstract