In recent years, academic research on perovskite solar cells (PSCs) has attracted remarkable attention, and one of the most crucial issues is promoting the power conversion efficiency (PCE) and operational stability of PSCs. Generally, modification of the electron or hole transport layers between the perovskite layers and electrodes via surface engineering is considered an effective strategy because the inherent structural defects between charge carrier transport layers and perovskite layers can be reshaped and modified by adopting the functional nanomaterials, and thus the charge recombination rate can be naturally decreased. At present, large amounts of available nanomaterials for surface modification of the perovskite films are extensively investigated, mainly including nanocrystals, nanorods, nanoarrays, and even colloidal quantum dots (QDs). In particular, as unique size-dependent nanomaterials, the diverse quantum properties of colloidal QDs are different from other nanomaterials, such as their quantum confinement effects, quantum-tunable effects, and quantum surface effects, which display great potential in promoting the PCE and operational stability of PSCs as the charge carriers in perovskite layers can be effectively tuned by these quantum effects. However, preparing QDs with a neat and desirable size remains a technical difficulty, even though the present chemical engineering is highly advanced. Fortunately, the rapid advances in laser technology have provided new insight into the precise preparation of QDs. In this review, we introduce a new approach for preparing the QDs, namely pulsed laser irradiation in colloids (PLIC), and briefly highlight the innovative works on PLIC-prepared QDs for the optimization of PSCs. This review not only highlights the advantages of PLIC for QD preparation but also critically points out the challenges and prospects of QD-based PSCs.
Read full abstract