Abstract

Recent advancement in nanotechnology brings the idea of hybrid nanomaterials which offer distinguish applications in thermal reservoirs, cooling systems, energy applications, chemical engineering, vehicle engines etc. The understating of shape features for hybrid nanomaterials is quite essential as such consequences highly influenced various thermal properties like viscosity, thermal conductivity, optical properties, stability etc. The objective of current work is to examine heat transfer analysis due to thin film unsteady flow of hybrid nanofluid. The properties of hybrid nanofluid are justified for entertaining the copper (Cu), aluminium oxide (Al2O3) nanoparticles with water (H2O) base fluid. Additionally, applications of viscous dissipation, heat source and nonlinear radiated effects are attributed to current flow problem. The thermal properties of nanoparticles are examined in presence of five shape features consisting of blades, platelets, cylinders, bricks and spheres. Numerical simulations of problem are performed via Runge-Kutta-Fehlberg method. Comparative heat transfer is performed for mono nanofluid (Cu/H2O) and hybrid nanofluid (Cu−Al2O3)//H2O. It has been observed that heat transfer enhancement is more stable for cylindrical particles as compared to spherical nanoparticles. The skin friction enhances due to Hartmann number for both mono nanofluid (MNF) and hybrid nanofluid (HNF). Current results claim applications in coating thin films, lubrication systems, improving the thermal efficiency in thermal and industrial systems, heat exchangers, cooling systems etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.