An indoor EDTA and HNO3 enriched environment was created by an injection system with timing and varying concentration control. Spinacea oleracea was selected hydroponic plant exposed to various doses of Ni2+ (0, 1000, 2000 and 4000 mg/L) as Na2EDTA at (0, 500 and 3000 mg/L) and (0,500 and 3000 mg/L) HNO3 in different combinations for 6 days with 10-hour-treatment each day. This study used modified Hoagland nutrient culture in a screen house to provide an ideal environment for comparing the efficiency of chelate-assisted and unchelated phytoextraction of Ni2+ by S. oleracea. Changes in morphological characteristics including leaf damage rate to evaluate morphological resistance to Ni2+ uptake and proline contents was observed. Changes in fresh biomass were significant (p < 0.05) with respect to addition of EDTA and HNO3 at different concentration to different concentrations of Ni2+ compared to unchelated treatments of same concentrations of Ni2+. The Ni2+ induced proline accumulation in shoots increased significantly (P < 0.05) with increasing Ni2+ concentrations.
Read full abstract