Abstract

Soil pollution due to potentially toxic elements is a worldwide challenge for health and food security. Chelate-assisted phytoextraction along with the application of plant growth regulators (PGRs) could increase the phytoremediation efficiency of metal-contaminated soils. The present study was conducted to investigate the effect of different PGRs [Gibberellic acid (GA3) and indole acetic acid (IAA)] and synthetic chelator (EDTA) on growth parameters and Cd phytoextraction potential of Dysphania ambrosioides (L.) Mosyakin & Clemants grown under Cd-spiked soil. GA3 (10-7 M) and IAA (10-5 M) were applied four times with an interval of 10 days through a foliar spray, while EDTA (40 mg kg-1 soil) was once added to the soil. The results showed that Cd stress significantly decreased fresh biomass, dry biomass, total water contents, and photosynthetic pigments as compared to control. Application of PGRs significantly enhanced plant growth and Cd phytoextraction. The combined application of GA3 and IAA with EDTA significantly increased Cd accumulation (6.72 mg pot-1 dry biomass) and bioconcentration factor (15.21) as compared to C1 (Cd only). The same treatment significantly increased chlorophyll, proline, phenolic contents, and antioxidant activities (CAT, SOD, and POD) while MDA contents were reduced. In roots, Cd accumulation showed a statistically significant and positive correlation with proline, phenolics, fresh biomass, and dry biomass. Similarly, Cd accumulation showed a positive correlation with antioxidant enzyme activities in leaves. D. ambrosioides showed hyperaccumulation potential for Cd, based on bioconcentration factor (BCF) > 1. In conclusion, exogenous application of GA3 and IAA reduces Cd stress while EDTA application enhances Cd phytoextraction and ultimately the phytoremediation potential of D. ambrosioides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call