A numerical technique for solving nonlinear optimal control problems is introduced. The state and control variables are expanded in the Chebyshev series, and an algorithm is provided for approximating the system dynamics, boundary conditions, and performance index. Application of this method results in the transformation of differential and integral expressions into systems of algebraic or transcendental expressions in the Chebyshev coefficients. The optimum condition is obtained by applying the method of constrained extremum. For linear-quadratic optimal control problems, the state and control variables are determined by solving a set of linear equations in the Chebyshev coefficients. Applicability is illustrated with the minimum-time and maximum-radius orbit transfer problems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Read full abstract