Abstract
A numerical technique for solving nonlinear optimal control problems is introduced. The state and control variables are expanded in the Chebyshev series, and an algorithm is provided for approximating the system dynamics, boundary conditions, and performance index. Application of this method results in the transformation of differential and integral expressions into systems of algebraic or transcendental expressions in the Chebyshev coefficients. The optimum condition is obtained by applying the method of constrained extremum. For linear-quadratic optimal control problems, the state and control variables are determined by solving a set of linear equations in the Chebyshev coefficients. Applicability is illustrated with the minimum-time and maximum-radius orbit transfer problems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.