As the penetration rate of electric vehicles (EVs) increases, how to reasonably distribute the ensuing large charging load to various charging stations is an issue that cannot be ignored. This problem can be solved by developing a suitable charging guidance strategy, the development of which needs to be based on the establishment of a realistic EV charging behaviour model and charging station queuing system. Thus, in this paper, a guidance and pricing strategy for fast charging that considers different types of EV users’ willingness to charge is proposed. Firstly, the EVs are divided into two categories: private cars and online ride-hailing cars. These categories are then used to construct charging behaviour models. Based on this, a charging decision model for EV users is constructed. At the same time, a first-come-first-served (FCFS) charging station queuing system is constructed to model the real-time charging situation in the charging station in a more practical way. Finally, a dynamic tariff updating model is used to obtain the optimal time-of-use tariff for each charging station, and then the tariffs are used to guide the fast-charging demand. By comparing the spatial and temporal distribution of charging demand loads at charging stations under different scenarios and considering whether the tariffs at each charging station play a guiding role, it is verified that the proposed strategy effectively optimises the balanced distribution of EV charging loads and alleviates the congestion at charging stations.
Read full abstract