HfO2, as a gate dielectric material for the charge trapping memory, has been studied extensively due to its merits such as high k value, good thermal stability, and conduction band offset relative to Si, etc.. In order to understand the reason why the charge trapping efficiency is improved by high k capture layer with respect to charge trapping type memory, the variation of HfO2 crystal texture induced by oxygen vacancy and the influences of it are investigated using the first principle calculation based on density functional theory. Results show that the distance of the nearest neighbor oxygen atom from oxygen vacancy is markedly reduced after optimization, whereas the decrease of distances between the next nearest neighbor oxygen atom from oxygen vacancy and hafnium is less. The change of local crystal lattice is caused by optimized oxygen vacancy for it significantly changes the local lattice, but rarely influences the far lattice. Deep energy level and density of electron states in conduction band are contributed by Hf atoms, while the density of electron states in valence band is contributed by O atoms. The local density of electron states in each element and the total density of electron states in the optimization system are all larger than those in the system without optimization, and the sum of the local densities of electron states is less than the total density of electron states. The trapped charges are moving mainly around the oxygen vacancy and the adjacent atoms of oxygen in the optimization system, but the charges are without optimization throughout the system. The local energy of charge is increased in optimized defect system, while the local energy of charge is conspicuously reduced in the system without optimization, i.e. lattice variation without saturation characteristic has a large effect on the local energy of charge. Results further prove that the change of crystal lattice induced by oxygen vacancy has strong ability to capture charge, which helps improve the features of memory.