In the energy balancing system of distributed generation systems with RES (renewable energy sources), in particular with wind turbines, the effective use of the battery of the balancing system depends on the charge-discharge modes that are implemented. To be effectively used in an energy balancing system, the RES control system should coordinate the processes of energy generation and accumulation in the system through the implementation of operational management with forecasting. Depending on the characteristics of the battery and the accuracy of the measurement or prediction of the energy the battery capacity (or the number of batteries) that will provide the specified control range (controlled operation area) needs to be chosen. Empirical relations (equations) devoted to the dependence of the battery capacity on the discharge current and to the change of voltage at the terminals of the battery during direct current discharge were listed. Among the equations Peukert’s law was chosen. A general view of the dependence of the battery capacity on the discharge current was shown. The formula for Peukert's constant (coefficient) was given. 5 Packert's law limitations were listed including the fact that the effect of temperature on the battery is not taken into account. The influence of depth charge-discharge and the number of discharge cycles on the capacitance was shown. In the process of using the battery and increasing the number of charge-discharge cycles, the capacity decreases. Peukert’s formula was extended to be influenced by temperature: both the Peukert’s capacity and the Peukert’s coefficient depend on the temperature because the Peukert’s coefficient depends on the capacity. For further calculations, a rechargeable battery HZB12-180FA from manufacturer HAZE Battery Campany Ltd was chosen. The temperature was taken into account by empirical dependences from the manufacturer and then they were approximated by 3rd order polynomials. Graphical results of the approximation were shown. The formula of dependency between the power of the wind turbine and the wind speed was shown. The connection between wind speed prediction error, amount of power that could not be obtained because of that and the number of batteries that would provide the specified control range (controlled operation area) was shown. Thus, for calculation of the number of batteries the depth of discharge, temperature and prediction (measurement) error were taken into account. Example dependences of the number of batteries on the wind speed error at temperatures of -20 °C, 0 °C and 20 °C were shown. Curves of dependence of the number of batteries of the balancing system on the ambient temperature and the error of wind speed forecasting was constructed. As an example, when the prediction error increases from 10% to 15%, the number of batteries needs to be increased by 1.17 times, and when the temperature decreases from 20 °C to 0 °C, the number of batteries needs to be increased by 1.48 times. The results of the work can be used at the stage of planning the wind turbine when choosing the number and capacity of the batteries to be installed. Possible areas of further research are using Peukert's formulas, generalized for other or different types of batteries, using other formulas, except for Peukert’s one, for taking into account the dependence of battery capacity on discharge current, using a non-empirical approach to include dependency on temperature.