Fault diagnosis of rapier loom is an inevitable requirement to meet the demand of intelligent manufacturing. Facing the strong noise interference caused by complex working environment, accurate and reliable vibration signal detection of blade loom spindle is the key to realize the rapier loom fault diagnosis. This paper proposes a method to extract the spindle vibration signal of the rapier loom by Adaptive Piecewise Hybrid Stochastic Resonance (APHSR) after the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN). Firstly, ICEEMDAN is used to pre-process the weak vibration signal containing noise, decompose the signal into multiple IMF components and display the high and low frequency signal characteristics of the original signal. Then, the energy density method and the correlation coefficient method are used to remove high and low noise, respectively, to filter the optimal IMF components, and then the signal containing valid information is reconstructed. Finally, the reconstructed signal is input to APHSR for noise-assisted enhancement after scale transformation to restore the faint vibration signal feature frequencies and achieve effective feature extraction. Through the simulation experiment and the engineering fault experiment analysis, comparing ICEEMDAN-APHSR with CEEMDAN-SR, ICEEMDAN-SR, CEEMDAN-APHSR methods. The difference between the spectrum amplitude, the spectrum amplitude and the maximum noise and the maximum signal to noise ratio (SNR) of the fault feature frequency of the rapier loom spindle bearing increased by 3.3668 dB,1.7205 dB,2.3952 dB, respectively. The results show that ICEEMDAN-APHSR method can accurately extract the fault feature frequency of the spindle bearing of rapier loom, and effectively solves the problem of extracting the weak vibration signal feature of rapier loom in the background of strong noise. This method is beneficial to the future research of rapier loom fault diagnosis, and is of great significance to promote the maintenance of loom equipment and production safety and quality.
Read full abstract