We show that a known condition for having rough basin boundaries in bistable 2D maps holds for high-dimensional bistable systems that possess a unique nonattracting chaotic set embedded in their basin boundaries. The condition for roughness is that the cross-boundary Lyapunov exponent λx on the nonattracting set is not the maximal one. Furthermore, we provide a formula for the generally noninteger co-dimension of the rough basin boundary, which can be viewed as a generalization of the Kantz-Grassberger formula. This co-dimension that can be at most unity can be thought of as a partial co-dimension, and, so, it can be matched with a Lyapunov exponent. We show in 2D noninvertible- and 3D invertible-minimal models, that, formally, it cannot be matched with λx. Rather, the partial dimension D0 (x) that λx is associated with in the case of rough boundaries is trivially unity. Further results hint that the latter holds also in higher dimensions. This is a peculiar feature of rough fractals. Yet, D0 (x) cannot be measured via the uncertainty exponent along a line that traverses the boundary. Consequently, one cannot determine whether the boundary is a rough or a filamentary fractal by measuring fractal dimensions. Instead, one needs to measure both the maximal and cross-boundary Lyapunov exponents numerically or experimentally.
Read full abstract