Abstract

The nonlinear dynamics of a recently derived generalized Lorenz model [ Macek & Strumik, 2010 ] of magnetoconvection is studied. A bifurcation diagram is constructed as a function of the Rayleigh number where attractors and nonattracting chaotic sets coexist inside a periodic window. The nonattracting chaotic sets, also called chaotic saddles, are responsible for fractal basin boundaries with a fractal dimension near the dimension of the phase space, which causes the presence of very long chaotic transients. It is shown that the chaotic saddles can be used to infer properties of chaotic attractors outside the periodic window, such as their maximum Lyapunov exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.