The complex resistivity (CR) measurement constitutes a practical methodology for investigating the internal structures of rocks and ores alongside their mineralogical compositions and the chemical properties of fluids. However, during complex resistivity testing, particularly at high frequencies, the leakage current caused by the distributed capacitance of the instrument’s acquisition channels reduces the measurement accuracy. Additionally, the contact impedance of the measuring devices and the electromagnetic coupling effects of the measurement cables further affect the complex resistivity test results of samples. To accurately characterize samples’ intrinsic induced polarization (IP) properties, we developed a broadband complex resistivity measurement system (1 mHz–100 kHz) for rocks and ores, comprising a complex resistivity analyzer and a sample holder, employing the four-electrode method. In this study, we establish a circuit model for the measurement system to analyze the influence of the distributed capacitance of the acquisition channels on the test results at elevated frequencies. We derive the error terms inherent in the instrument’s measurements across various circuit design configurations and propose a novel method for calculating the distributed capacitance of the instrument’s acquisition channels, the parasitic capacitance of the sampling resistor, and for calibrating data by reversing the polarity of the excitation signal. Furthermore, we investigate the effect of contact impedance within the measurement setup on test results and design two sample-testing devices. Through extensive testing on multiple circuit models and samples, the system achieves an accuracy of up to 1% within the 10 MΩ range. Its overall performance surpasses that of the Solartron 1260A impedance analyzer and traditional signal source forward connection calibration methods. This advancement holds significant implications for complex resistivity measurements and the study of rock physical properties.
Read full abstract