Neutrophils are involved in acute lung injury during ARDS via several mechanisms. This study focuses on neutrophil-derived oxidative stress. Hypochlorite is a major neutrophil-derived oxidant. This study characterizes hypochlorite-induced acute changes in pulmonary circulation and the involvement of tissue lipid peroxidation (LPO) and reduced glutathione (rGSH) depletion. Hypochlorite (500, 1,000, and 2,000 nmol/min) or buffer (control) were infused into isolated rabbit lungs. Pulmonary artery pressure (PAP), capillary filtration coefficient (Kf,c) [10(4)/mL/s/cm H(2)O/g], and lung weight were measured. Experiments were terminated after 105 min or when fluid retention was > 50 g. Lung tissue was frozen immediately after termination of the experiments and analyzed for LPO products and rGSH (nanomoles per milligram of protein). Baseline PAP and Kf,c values averaged from 6.1 to 6.5 mm Hg and from 0.97 to 1.23, respectively, in all groups. Hypochlorite infusion of 500, 1,000, and 2,000 nmol/min (n = 5 to 7 per group) evoked an increase (mean +/- SEM) in maximum PAP (PAPmax) [12.9 +/- 2.1, 14.3 +/- 1.7, and 13.3 +/- 2.2 mm Hg], in maximum Kf,c (Kf,cmax) [1.9 +/- 1.2, 6.34 +/- 1.2, and >10.0], and in tissue LPO products (1.7 +/- 0.06, 2.1 +/- 0.06, and 2.3 +/- 0.11 vs 1.4 +/- 0.04 in controls), and a decrease in tissue rGSH (73.4 +/- 8.7, 43.0 +/- 9.6, and 50.4 +/- 7.2 vs 139 +/- 12.6 in controls). Parameters of lung injury (PAPmax and Kf,cmax) of each single experiment were closely correlated with tissue rGSH but did not correlate with tissue LPO products. All changes are significant (p < 0.05) vs control. The neutrophil-specific oxidant hypochlorite induces acute lung injury, rGSH depletion, and LPO in isolated rabbit lungs. The lung injury correlates with rGSH depletion, suggesting an important mechanistic role in hypochlorite-induced acute lung injury.
Read full abstract