Metalimnetic oxygen minimum (MOM) is a frequent occurrence in lakes and reservoirs, and its formation is related to the blooming and apoptosis of algae. In this study, the apoptosis mechanism of Chlorella vulgaris (C. vulgaris) and the release of intracellular organic matter (IOM) under different MOM conditions were analyzed by changing the dissolved oxygen (DO) (7.0 mg/L, 3.0 mg/L, and 0.3 mg/L) and water pressure (0.3 MPa and normal pressure). The integrity and auto-fluorescence of algae cells decreased rapidly in the first 8 days, and then stabilized gradually during the development of MOM. Compared with that of water pressures, DO had a significant effect on the activity of algal cells, and higher initial DO levels (3.0 mg/L and 7.0 mg/L) accelerated the lysis of algal cells. The integrity of algae cells decreased to 28.8 %, 31.8 % and 56.6 % at the initial DO of 7 mg/L, 3 mg/L and 0.3 mg/L under 0.3 MPa, respectively. Meanwhile, the concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) continued to increase and reached their maximum at 8 or 12 days, respectively, due to the IOM release caused by algal cell rupture, and then gradually decreased due to microbial degradation. Consistent with the results of membrane integrity, the highest DOC and DON concentrations were found at higher initial DO conditions. By parallel factor analysis, the change in total organic matter fluorescence intensity was consistent with DOC, once again increasing in the first 8 days and then gradually decreasing. The increased humic-like component, which is related to higher aromaticity, led to the monotonic increase of HAAFPs and THMFPs. However, the released IOM of C. vulgaris had lower N-DBPFPs, with TCNMFP predominating primarily. In summary, these results shed new lights on exploring the apoptosis of algae and the release of IOM during the development of MOM.