Abstract

Regularly measuring the level of CD4+ cells is necessary for monitoring progression and predicting prognosis in patients suffering from an infection with the human immunodeficiency virus (HIV). However, the current flow cytometry standard detection method is expensive and complicated. A parallel catalytic hairpin assembly (CHA)-assisted fluorescent aptasensor is reported for homogeneous CD4 count by targeting the CD4 protein expressed on the membrane of CD4+ cells. Detection was achieved using CdTe quantum dots (QDs) and methylene blue (MB) as signal reporters. CdTe QDs distinguished CHA-assisted release of Ag+ and C-Ag+-C and MB that has differentiated cytosine (C)-rich single-stranded DNA (ssDNA) and C-Ag+-C, generating changes in fluorescence intensity. With the assistance of the CHA strategy and luminescent nanomaterials, this method reached limits of detection of 0.03 fg/mL for the CD4 protein and 0.3 cells/mL for CD4+ cells with linear ranges of 0.1 to 100 fg/mL and 1 to 1000 cells/mL, respectively. The method was validated in 50 clinical whole blood samples consisting of 30 HIV-positive patients, 10 healthy volunteers, and 10 patients with cancer or other chronic infections. The findings from this method were in good agreement with the data from clinical flow cytometry. Due to its sensitivity, affordability, and ease of operation, the current method has demonstrated great potential for routine CD4 counts for the management of HIV, especially in communities and remote areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call