Individuals of many species can regulate their physiology, morphology, and behavior in response to annual changes of day length (photoperiod). In mammals, the photoperiodic signal is mediated by a change in the duration of melatonin, leading to alterations in gene expressions, neuronal circuits, and hormonal secretion. The hippocampus is one of the most plastic structures in the adult brain and hippocampal neuronal morphology displays photoperiod-induced differences. Because the hippocampus is important for emotional and cognitive behaviors, photoperiod-driven remodeling of hippocampal neurons is implicated in seasonal differences of affect, including seasonal affective disorder (SAD) in humans. Because neuronal architecture is also affected by the day-night cycle in several brain areas, we hypothesized that hippocampal neuronal morphology would display a diurnal rhythm and that day length would influence that rhythm. In the present study, we examined diurnal and seasonal differences in hippocampal neuronal morphology, as well as mRNA expression of the neurotrophic factors (i.e., brain-derived neurotrophic factor [Bdnf], tropomyosin receptor kinase B [trkB; a receptor for BDNF], and vascular endothelial growth factor [Vegf]) and a circadian clock gene, Bmal1, in the hippocampus of Siberian hamsters. Diurnal rhythms in total length of dendrites, the number of primary dendrites, dendritic complexity, and distance of the furthest intersection from the cell body were observed only in long-day animals; however, diurnal rhythms in the number of branch points and mean length of segments were observed only in short-day animals. Spine density of dendrites displayed diurnal rhythmicity with different peak times between the CA1 and DG subregions and between long and short days. These results indicate that photoperiod affects daily morphological changes of hippocampal neurons and the daily rhythm of spine density, suggesting the possibility that photoperiod-induced adjustments of hippocampal neuronal dynamics might underlie seasonal difference of affective responses. Bmal1 mRNA showed a diurnal rhythm and different expression levels between long and short days were observed. However, there were no strong effects of day length on Bdnf. trkb, and Vegf gene expression, suggesting that these genes are not involved in the photoperiodic effects on hippocampal neurons.
Read full abstract