The use of embryo transfer helps to improve reproductive performance during periods of heat stress. In vitro produced embryo transfer (IVP-ET) is more expensive than artificial insemination. We hypothesized that the value IVP-ET in seasonal herds depends on herd constraints, such as the maximum number of milking cows and the maximum number of calvings that can be accommodated throughout the year. Therefore, the objective of this study was to estimate how profitability in dairy herds exposed to summer heat stress is affected by the number of months in which IVP-ET is used, the use of IVP-ET in repeat-breeder cows, IVP-ET cost, and herd constraints. We built and used a nonlinear programming model of a dairy herd with young stock and cows with monthly Markov Chain transitions. The model varied the number of heifers calving in each calendar month to maximize herd profitability. We varied IVP-ET cost ($100 or $200), duration of the IVP-ET program (2 or 4 months), and the breeding number in which IVP-ET started (1st or 3rd). In total, 20 scenarios were simulated. Maximum profitability was obtained when IVP-ET was not used, regardless of herd constraints. The 16 scenarios in which IVP-ET was used showed increased seasonality in milk yield, numbers of milking cows, total cows, total calvings, and heifer calvings because the program tried to limit the number of IVP-ET breedings in the summer. The addition of the calving constraint increased the value of IVP-ET. The breakeven cost per IVP-ET ranged from −$6.79 to $24.38 compared with conventional semen cost of $20. In conclusion, the current market costs of IVP-ET did not warrant application with the objective to increase reproductive performance during heat stress. Herd constraints on the maximum allowable seasonality in the monthly number of milking cows and calvings affected the value of IVP-ET during heat stress.
Read full abstract